aboutsummaryrefslogtreecommitdiff
path: root/test/latent_space_test.py
diff options
context:
space:
mode:
authorVee9ahd1 <[email protected]>2019-06-03 14:12:08 -0400
committerVee9ahd1 <[email protected]>2019-06-03 14:12:08 -0400
commite2dfe1e1dce59723b424ed334234475c0e9b6227 (patch)
tree5b3b1b961d1b04096ef6aef2b456c1a5375e3f6a /test/latent_space_test.py
parent5a39b9cbb92977734814600f18cc7b1d98b548a1 (diff)
rewrote latent space tests
Diffstat (limited to 'test/latent_space_test.py')
-rw-r--r--test/latent_space_test.py153
1 files changed, 139 insertions, 14 deletions
diff --git a/test/latent_space_test.py b/test/latent_space_test.py
index 0655923..d05eb78 100644
--- a/test/latent_space_test.py
+++ b/test/latent_space_test.py
@@ -1,9 +1,10 @@
import unittest
import numpy as np
from scipy.stats import truncnorm
+import context
from gantools import latent_space
-from gantools import biggan
import PIL.Image
+import math
def create_random_keyframe(n_vector, n_label):
truncation = (0.9 - 0.1)*np.random.random() + 0.1
@@ -29,21 +30,145 @@ def save_ims(ims):
i += 1
####
+def compare_float_arrays_2d(target_seq, actual_seq):
+ for target, actual in zip(target_seq, actual_seq):
+ for ti, ai in zip(target, actual):
+ assert math.isclose(ti, ai), 'target: %s; actual %s' % (str(target), str(actual))
+
class TestLatentSpace(unittest.TestCase):
- def test_sequence_keyframes(self):
- num_frames = 20
- batch_size = 3
- keyframe_count = 3
- dim_z = 128
- dim_label = 1000
- keyframes = [create_random_keyframe(dim_z,dim_label) for i in range(keyframe_count)]
- z_seq, label_seq, truncation_seq = latent_space.sequence_keyframes(keyframes, num_frames, batch_size)
- self.assertIs(len(z_seq), num_frames)
- self.assertIs(len(label_seq), num_frames)
- gan = biggan.BigGAN()
- ims = gan.sample(z_seq, label_seq, truncation_seq, batch_size)
- save_ims(ims)
+ def test_linear_interp_basic(self):
+ target_seq = np.asarray([
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
+ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
+ ]).transpose()
+ points = np.asarray([target_seq[0], target_seq[-1]])
+ step_count = target_seq.shape[0]
+ actual_seq = latent_space.linear_interp(points, step_count)
+ compare_float_arrays_2d(target_seq, actual_seq)
+
+ def test_sequence_keyframes_linear_random_basic(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=1,
+ interp_method='linear')
+
+ assert (num_frames == z.shape[0]),\
+ 'z sequence: target frame count: %s; actual shape: %s' % (num_frames, z.shape)
+ assert (num_frames == label.shape[0]),\
+ 'label sequence: target frame count: %s; actual shape: %s' % (num_frames, label.shape)
+ assert (num_frames == trunc.shape[0]),\
+ 'trunc sequence: target frame count: %s; actual shape: %s' % (num_frames, trunc.shape)
+
+ def test_sequence_keyframes_linear_random_batch(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ batch_size = 7 # pick something that doesn't divide num_frames
+ batch_div = int(num_frames // batch_size)
+ batch_rem = 1 if int(num_frames % batch_size) > 0 else 0
+ batch_count = batch_div + batch_rem
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=batch_size,
+ interp_method='linear')
+
+ assert (num_frames == z.shape[0]),\
+ 'z sequence: target frame count: %s; actual shape: %s' % (num_frames, z.shape)
+ assert (num_frames == label.shape[0]),\
+ 'label sequence: target frame count: %s; actual shape: %s' % (num_frames, label.shape)
+ assert (batch_count == trunc.shape[0]),\
+ 'trunc sequence: target frame count: %s; actual shape: %s' % (batch_count, trunc.shape)
+
+ def test_sequence_keyframes_linear_random_batch_oob(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ batch_size = 150 # pick something that doesn't divide num_frames
+ batch_div = int(num_frames // batch_size)
+ batch_rem = 1 if int(num_frames % batch_size) > 0 else 0
+ batch_count = batch_div + batch_rem
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=batch_size,
+ interp_method='linear')
+
+ assert (num_frames == z.shape[0]),\
+ 'z sequence: target frame count: %s; actual shape: %s' % (num_frames, z.shape)
+ assert (num_frames == label.shape[0]),\
+ 'label sequence: target frame count: %s; actual shape: %s' % (num_frames, label.shape)
+ assert (batch_count == trunc.shape[0]),\
+ 'trunc sequence: target frame count: %s; actual shape: %s' % (batch_count, trunc.shape)
+
+ def test_sequence_keyframes_cubic_random_basic(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=1,
+ interp_method='cubic')
+
+ assert (num_frames == z.shape[0]),\
+ 'z sequence: target frame count: %s; actual shape: %s' % (num_frames, z.shape)
+ assert (num_frames == label.shape[0]),\
+ 'label sequence: target frame count: %s; actual shape: %s' % (num_frames, label.shape)
+ assert (num_frames == trunc.shape[0]),\
+ 'trunc sequence: target frame count: %s; actual shape: %s' % (num_frames, trunc.shape)
+
+ def test_sequence_keyframes_cubic_random_batch(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ batch_size = 7 # pick something that doesn't divide num_frames
+ batch_div = int(num_frames // batch_size)
+ batch_rem = 1 if int(num_frames % batch_size) > 0 else 0
+ batch_count = batch_div + batch_rem
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=batch_size,
+ interp_method='cubic')
+
+ assert (num_frames == z.shape[0]),\
+ 'z sequence: target frame count: %s; actual shape: %s' % (num_frames, z.shape)
+ assert (num_frames == label.shape[0]),\
+ 'label sequence: target frame count: %s; actual shape: %s' % (num_frames, label.shape)
+ assert (batch_count == trunc.shape[0]),\
+ 'trunc sequence: target frame count: %s; actual shape: %s' % (batch_count, trunc.shape)
+ def test_sequence_keyframes_cubic_random_batch_oob(self):
+ n_keyframes = 10
+ n_vector = 100
+ n_label = 1000
+ num_frames = 100
+ batch_size = 150 # pick something that doesn't divide num_frames
+ batch_div = int(num_frames // batch_size)
+ batch_rem = 1 if int(num_frames % batch_size) > 0 else 0
+ batch_count = batch_div + batch_rem
+ keyframes = np.asarray([create_random_keyframe(n_vector, n_label) for i in range(n_keyframes)])
+ z, label, trunc = latent_space.sequence_keyframes(
+ keyframes,
+ num_frames,
+ batch_size=batch_size,
+ interp_method='cubic')
if __name__ == '__main__':